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Motivation

Goal: Perform 3D brain lesion mapping by identifying
spatial locations in the brain where lesion incidence is
associated with different covariates (e.g. age, disease
duration and severity) to enable a better understanding
of the aging brain and multiple sclerosis.
Existing lesion mapping approaches:

• Mass-univariate method: Firth Regression [2]

→ Fit a model at every voxel location independently.
→ Ignore any form of spatial dependence.

• Bayesian spatial method: BSGLMM [3]

→ Accounts for shared information between neighbor-
ing voxels.

→ High computational cost of MCMC methods.

BLESS

Bayesian Lesion Estimation with Structured Spike-and-
Slab (BLESS) Prior

• Handles many covariates using shrinkage priors to do
variable selection.

• Scales to thousands of subjects and accounts for spa-
tial dependency in 3D lesionmapping studies contain-
ing over 50,000 voxel locations.

• Relies on optimization rather than MCMC for faster
parameter estimation and inference.

• Offers uncertainty estimates of any spatial statistics,
such as cluster size, providing credible intervals of
cluster size and measures of reliability of cluster oc-
currence.

Spike-and-Slab Prior
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• Firth finds many negligible effects that overlap with a
set of large ones, motivating the spike-and-slab prior.

• Firth regression coefficients (top left) suggest a mixture
of two normal distributions with different variances.

• BB-BLESS coefficients (top right) show how the spike-
and-slab prior pulls negligible effects to 0 while leaving
large coefficients unaffected in a slab distribution.

Model

(1) Probit Model

{
[yi(sj)|pi(sj)] ∼ Bernoulli[pi(sj)]
Φ−1 {E[yi(sj)|pi(sj)]} = ηi(sj) = xTiβ(sj) + β0(sj)

(2) Latent Model

Pr[yi(sj)|zi(sj)] =

{
1, zi(sj) > 0,

0, zi(sj) ≤ 0,

zi(sj) ∼ N (xTiβ(sj) + β0(sj), 1)

(3) Spike-and-Slab Prior

{
βp(sj) ∼ N (0, ν0(1− γp(sj)) + ν1γp(sj))

γp(sj) ∼ Bernoulli(σ(θp(sj)))

(4) MCAR Prior

[θ(sj) | θ(−sj),Σ] ∼ N
(∑

sr∈∂sj
θ(sr)

n(sj)
, Σ
n(sj)

)
Σ−1 ∼ Wishart(ν, I)

(1) Probit regression modeling lesion presence yi(sj) for every subject i at every voxel sj .

(2) Latent model using data augmentation approach assuming that the binary outcomes
yi(sj) have an underlying normal regression structure on continuous latents zi(sj).

(3) Spatially-varying, continuous version of the spike-and-slab prior on the parameters
β(sj) in the form of a mixture of normal distributions where 0 < ν0 < ν1.

(4) Sparsity parameter θ(sj) introduces the spatial structure within the probability of in-
clusion σ(θ(sj)), where σ(·) is the logistic function, with a multivariate conditional
autoregressive (MCAR) prior.

→ For inference, we use approximate posterior sampling based on Bayesian bootstrap
(BB-BLESS) [4] which consists of parallelizable variational optimizations (BLESS-VI) [5].

UK Biobank Application
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Data & Analysis:

• 2,000 subjects from the UK Biobank with lesion masks generated via segmentation tool
BIANCA. (Model 3D and scalable, and has been fit on ∼40,000 subjects.)

• 3D regression model of lesion incidence on covariates, age, sex, headsize scaling factor,
and age by sex [1], with an image mask of 54,728 voxels.

Results:
• Parameter maps: Negligible age coefficients are shrunk to nearly zero via BB-BLESS and
BLESS-VI compared to Firth regression. The point estimates for BB-BLESS and BLESS-VI
are almost identical.

• Thresholded significance maps: Inference results for BLESS-VI (thresholded based on
posterior inclusion probabilities) and BB-BLESS (thresholded based on test statistics) are
similar with 8,385 and 8,350 voxels detected. For Firth, only 6,278 voxel pass the FDR
adjusted threshold (Benjamini-Hochberg FDR threshold at a 5% level.)

• Scatterplots: BB-BLESS and BLESS-VI age coefficients show the regularization effect with
small values being pulled towards zero relative to Firth regression.

Conclusions:
• Key advantages of BLESS are the explicit modelling of the spatial dependence structure
in the lesion data, the identification of active predictors based on a fixed thresholding
rule via BLESS-VI and the equivalent detection of effects via test statistics via BB-BLESS.

Simulation Study
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• Evaluation of simulation studies with varying sample sizes N , base rate intensities λ,
and sizes of effect which compare the performance of BLESS to BSGLMM and Firth.

• BLESS outperforms BSGLMM and Firth with a lower number of false positives. Sensitiv-
ity and specificity for BLESS remains high for all sample sizes and base rate intensities.

• The marginal posterior of a single voxel approximated via BB-BLESS matches the Gibbs
sampled posterior (gold standard MCMC method) more closely than BLESS-VI.

• Wasserstein distance summarizes the performance of BB-BLESS across all voxels in an
image where a lower distance equals a higher alignment to the Gibbs posterior.

Cluster Size Based Imaging Statistics
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Cluster Size Inference:
• Estimate bootstrap samples of parameters, calculate test statistic maps
and acquire cluster size maps (via cluster defining threshold of 2.3).

• The histogram shows the cluster size distribution of the largest detected
cluster and the credible interval captures the uncertainty of cluster size.

Cluster Size Mapping:
• Prevalence map is determined by cluster occurrence across resampled
bootstrap maps where locations exceeding a probability of 50% indicate
a reliably large effect. Both clusters have reliably large effects with
values close to 1.

• The posterior mean and standard deviation map of cluster size are ac-
quired by thresholding cluster size quantities via the prevalence map.

Contact Details

Please scan the QR code to
find out more about BLESS!
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